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Abstract: The violation of charge-parity symmetry and the baryon asymmetry of the universe are

two of the most significant unresolved problems in physics. This article presents further research on

the CP violation problem in the Standard Model with 32 candidate sets of the 10 “natural” parameters

that exhibit the same Cabibbo–Kobayashi–Maskawa performance. These parameters are considered

“natural” because they consist solely of the Yukawa couplings and the vacuum expectation value

of the unique Higgs doublet in the Standard Model. Then, the problems of CP violation and the

baryon asymmetry of the universe are investigated by using the Jarlskog measure of CP violation,

∆CP = J(m2
t −m2

c )(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s )(m
2
b −m2

d)(m
2
s −m2

d)/T12, given that CP symmetry

is violated following the breakdown of SN symmetries. Subsequently, numerical tests are performed

in a simplified scenario where eight of the ten parameters are assumed to be fixed by two assumptions,

and the remaining two parameters are allowed to vary from the S2-symmetric point (x, y) = (−1, 1)

to their current values in all 32 parameter sets. To estimate the enhancement of CP violation in

such processes, a ratio R∆ ≡ ∆CP/∆
(0)
CP is proposed between the running ∆CP and its current value,

denoted by ∆
(0)
CP, which is approximately 10−20. In all 32 cases, the three-dimensional plots of

R∆ exhibit many regions that stick out of the R∆ = 1010 plane, especially in regions very close

to (x, y) = (−1, 1). These results demonstrate that the SN-breaking Standard Model is already

sufficient to violate CP symmetry explicitly and generate a significant amount of baryon asymmetry

of the universe. Furthermore, it solves existing problems without creating new ones, at least in the

scenario presented in this article.

Keywords: baryon asymmetry of the universe; charge-parity violation; SN symmetry

1. Introduction

The problem of how charge-parity (CP) symmetry was violated in electroweak inter-
actions has not been solved since it was discovered in 1964 [1]. In the Standard Model
(SM) of electroweak interactions, CP violation (CPV) comes solely from a complex phase
in the Cabibbo–Kobayashi–Maskawa (CKM) matrix [2,3]. However, the CKM matrix is a
product of two unitary transformation matrices that diagonalize the mass matrices of up-
and down-type quarks, respectively. Naturally, the key to igniting CPV is concealed in the
quark mass matrices.

In our previous research, we found that in SM and in its extension with one extra
Higgs doublet, the two-Higgs doublet model (2HDM), S3 symmetries among three fermion
generations always make the CP symmetry conserved [4–8]. However, if the S3 symmetries
are broken down into various residual S2 symmetries, a complex phase appears explicitly
in the CKM matrix, which means that CP symmetry was violated following the breakdown
of S3 symmetries [9,10]. The Jarlskog invariant J ∼ 0.171 thus derived is about 5700 times
that of its current value J(0) = (3.00+0.15

−0.09)× 10−5 given by current experiments [11].
In two subsequent research studies [10,12], the S2 symmetries can be further broken

down to be completely asymmetric, and the derived CKM matrix contains only four param-
eters: two from up-type quarks and two from down-type quarks. These four parameters
are natural since they are solely composed of the Yukawa couplings and v, the vacuum
expectation value (VEV) of the only Higgs doublet in SM. The CKM elements thus derived
fit experiments to an accuracy of O(λ1/2) or better at tree level.
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How and when the baryon asymmetry of the universe (BAU) [13–15] was produced
and remains to this day is another long-unsolved problem in physics. In cosmology, BAU
is estimated by the excess of baryons over anti-baryons, denoted by η = (nB − nB̄)/nγ or
(nB − nB̄)/s, where nB, nB̄, nγ, and s are number densities of baryon, anti-baryon, photon,
and entropy density observed in the current universe, respectively. By combining the
results from both the Planck mission [13,14] and the Wilkinson Microwave Anisotropy
Probe (WMAP) [15], a value of η ≈ 10−10 is obtained.

However, such a quantity is measured in the Standard Model of particle physics by
the Jarlskog measure of CPV [16,17],

∆CP = Im Det[mum†
u, mdm†

d]/T12

= J ∏
i<j

(m2
u,i − m2

u,j)∏
i<j

(m2
d,i − m2

d,j)/T12. (1)

Here, J is the Jarlskog invariant, T ≈ 100 GeV is the temperature of the electroweak
phase transition, and m2 are squares of quark masses. In many other studies, the factor
T12 has been replaced by v12, where v = 246 GeV is the VEV of the SM Higgs doublet.
However, in this article, choosing between T12 or v12 is not a problem at all, since this factor
will be canceled out automatically, as will be shown in Section 3.

Substituting all parameters in ∆CP with their current empirical values, ∆
(0)
CP is given

by ≈ 10−20 [11,18–21], which is much smaller than the cosmologically observed η ≈ 10−10.
The discrepancy between these two quantities is called the BAU problem [13–15].

The Jarlskog measure of CPV incorporates a term related to m2 and a CKM-related
Jarlskog invariant J given by

Im[VijVklV
∗
il V∗

kj] = J Σm,nǫikmǫjln, (2)

where ǫikm and ǫjln are Levi-Civita symbols, Vij are the ith column and jth row elements
of CKM matrix, and i, j = 1 to 3. Due to the unitarity of VCKM, J must always be smaller
than 1. Obviously, increasing J alone is never enough to account for the 1010 discrepancy.
In addition to J, squared quark masses also contribute to ∆CP, and our previous research
showed that the mass eigenvalues rely on five parameters for each quark type. This
suggests that varying the quark masses could be another approach to enhance the strength
of ∆CP. This topic will be explored in this article.

In Section 2, a summary of our previous research on the CPV problem is provided,
which is essential background information for subsequent investigations. Following the
principle of simplicity and elegance in nature, we prefer to study the CPV problem in the
SM, if possible, to avoid introducing new physics that can lead to additional problems. We
have previously studied the S3-symmetric 2HDM in [4,5] and found that the CP symmetry
is conserved. In [9], we have studied three less symmetric and more complicated patterns
for the mass matrices when S3 symmetries were broken down to residual S2 symmetries
and observed that the breakdown of S3 symmetries leads to the violation of CP symmetry.
However, the breakdown of SN symmetries and the violation of CP symmetry are likely
two effects of the same cause rather than being causally related.

Moreover, it was found that, for every mass matrix pattern obtained in the 2HDM,
there is always a corresponding pattern in the SM if each of the elements is re-parameterized
by a complex Yukawa coupling and the VEV of the unique Higgs doublet in the SM.
Therefore, it is sensible to study the problems in the SM since it will not introduce additional
problems. The model was further improved in [9] by replacing the assumed Hermitian M
matrices with naturally Hermitian M2 = M · M† matrices, which increases the generality
of the study. In such a case, only a very trivial assumption was required that the real part
M2

R and the imaginary part M2
I of M2 can be simultaneously and respectively diagonalized

by the same unitary matrix to solve the CPV problem. This concept solves problems instead
of introducing extra problems, such as the FCNC problem in the 2HDM or the masses and
Yukawa couplings of new quarks in the fourth-generation extension, and so on.
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In Section 3, these materials are applied to ∆CP, and we perform some simple tests on it,
resulting in 64 candidate parameter sets with the same CKM performance, of which half are

excluded by their predictions of imaginary quark masses. Then, the ratio R∆ ≡ ∆CP / ∆
(0)
CP

is proposed to compare the running ∆CP with its current value ∆
(0)
CP. Since there are 10

parameters in ∆CP, it is always possible to tune the parameters to obtain R∆ ≥ 1010, but
this is arbitrary and lacks physical meaning.

Therefore, the subsequent study will focus on a simplified case where six of the
parameters are fixed to their current values and two parameters to the S2 symmetry of
down-type quarks. Then, the remaining parameters x and y are allowed to vary from their
S2-symmetric values to their current values, searching for regions where R∆ ≥ 1010. The
findings reveal that all 32 cases exhibit numerous such regions, with the most intriguing
observation being that there is always a high R∆ region around the S2-symmetric point
(x, y) = (−1, 1) in their three-dimensional (3D) plots, where R∆ is precisely zero. This
implies that these cases can offer a highly productive environment for baryon asymmetry
generation when the S2 symmetry of up-type quarks starts to break down. Therefore,
an SN-breaking Standard Model may already be sufficient to resolve both the CPV and
BAU issues.

In Section 4, brief concluding remarks on this study are provided.

2. CP Violation in the Standard Model

To solve the problems of CPV and BAU, various physical models such as multi-Higgs
doublets, fourth fermion generation, super-symmetry, and others have been proposed to
extend the Standard Model. However, many of these models have the side effect of intro-
ducing new problems, and some even create more problems than they solve. For example,
the 2HDM introduces an FCNC problem but does not solve the CPV problem, although this
issue was recently addressed in [12]. Therefore, we prefer to explore solutions to these
problems using the simplest possible means. If feasible, we hope to solve these issues
using the Standard Model alone without any extensions. This article demonstrates that the
Standard Model alone is capable of violating CP symmetry and generating a significant
amount of BAU, without introducing any new problems.

In the Standard Model, which has three fermion generations, the Mq matrices have
a general pattern of a 3 × 3 matrix containing nine elements and eighteen independent
parameters, where nine come from real coefficients and nine from imaginary coefficients,
assuming that all elements are complex. The ideal solution to the CPV problem is to
analytically diagonalize the Mq matrices and use the resulting Uq matrices to generate a
complex phase in the CKM matrix, which is defined as a product of two Uq matrices, i.e.,

VCKM = Uu · Ud†. (3)

The diagonalization of the full Mq matrix is a complicated task, which has led physi-
cists to use simplifying assumptions to make progress in their research. These assumptions
include symmetries (such as Z2, SN , etc.), hermiticity, ad hoc zero elements, and others.
However, such constraints always reduce the generality of the models, leading to differ-
ences between the obtained solutions and reality. The degree of difference between the
predicted and observed values depends on the strength of the employed constraints. In
other words, models with fewer assumptions are expected to be closer to reality, and the
ideal solution is obtained by directly diagonalizing the full Mq matrix.

In some previous research, an S3 symmetry was introduced among three fermion
generations in the Standard Model [7,8,22], resulting in an oversimplified Mq pattern with
only two parameters per quark type. This simplification was achieved through the S3

invariance of the Lagrangian. However, this model had two degenerate mass eigenvalues
and a CP-conserving CKM matrix since both Uq matrices were real. This conflicted with
the first necessary condition for obtaining a complex VCKM, which requires at least one of
the Uq matrices to be complex [9].
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To address the mass-degeneracy problem, researchers extended the S3-symmetric
Standard Model with an extra Higgs doublet [4,5], which introduced a third parameter into
Mq and resulted in non-degenerate mass eigenvalues. However, this S3-symmetric 2HDM
did not solve the CPV problem, since the Uu and Ud matrices were the same (i.e., Uu = Ud),
despite having some complex elements. Although they satisfied the first condition for a
complex VCKM, as stated in [9], they conflicted with the second condition, which requires
Uu 6= Ud. These research studies demonstrated that oversimplified Mq patterns are inade-
quate for obtaining a satisfactory VCKM. Therefore, to achieve a satisfactory solution to the
CPV problem, researchers must search for a model with fewer and/or weaker constraints.

The S3-symmetric Standard Model, as mentioned earlier, oversimplifies the Mq pattern
and leads to a CP-conserving VCKM, indicating the need for a more complicated Mq pattern
with fewer and/or weaker constraints to address the CPV problem. In [9], researchers
explored three residual S2 symmetries between two of the three fermion generations,
resulting in three additional Mq and Uq patterns, The combination of these extra Uq patterns
with the S3-symmetric one creates an opportunity to satisfy both necessary conditions stated
in [9]. Notably, under certain conditions, CP symmetry was explicitly violated, with a
Jarlskog invariant of J ≈ 0.171, approximately 5700 times larger than that predicted by
the SM.

Originally, the goal of [9] was to find matrix pairs that can be diagonalized simulta-
neously by the same Uq matrix to address the FCNC problem in the 2HDM. During the
derivation, the NFC condition proposed by G. C. Branco [23], M1 · M†

2 − M2 · M†
1 = 0, was

frequently used. However, researchers found that such matrix pairs could be rearranged as
a product of a complex Yukawa-coupling matrix and the VEV of the unique Higgs doublet
in the SM, resulting in a Standard Model Mq that violates CP symmetry explicitly. As such,
if the SM is sufficient to solve these problems, researchers prefer to study them in the SM
rather than in the 2HDM or other new physics.

In subsequent research, the S2 symmetries were further removed, and only two
assumptions were kept: the hermiticity of Mq and a common Uq matrix that diagonalizes
the real and imaginary parts of Mq simultaneously [12]. In [10], the assumption of the
hermiticity of Mq was further removed. The researchers studied a naturally hermitian

matrix M2 = M
q
L · M

q†
L , where the subindex L denotes left-handed quarks, which has the

same U
q
L matrix as M

q
L. The only assumption that remained was that the real and imaginary

parts of M2 can be diagonalized by the same Uq simultaneously. This solution to the CPV
problem is not the ultimate one, but it predicts CKM elements that fit their corresponding
empirical values with an accuracy of O(λ1/2) or better at tree level.

In [10], a very general pattern for the squared mass matrix of quarks, M2, was given
in terms of five parameters: A, B, C, x, and y, which are composed solely of the Yukawa
couplings and the VEV of the SM Higgs doublet, as shown in Equations (6)–(14) of [10].
The pattern is given by:

M2 =







A + B(xy − x
y ) yB xB

yB A + B( y
x − x

y ) B

xB B A






+ i







0 C
y −C

x

−C
y 0 C

i C
x −C 0







≡ M2
R + M2

I , (4)

where M2
R is the real part of M2, and M2

I is the imaginary part.
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The eigenvalues of this matrix were given analytically by:

m2
1 = A − B

x

y
− C

√

x2 + y2 + x2y2

xy
,

m2
2 = A − B

x

y
+ C

√

x2 + y2 + x2y2

xy
,

m2
3 = A + B

(x2 + 1)y

x
. (5)

The unitary matrix Uu that simultaneously diagonalizes M2
R and M2

I for up-type
quarks is given by:

Uu =













−
√

x2+y2√
2(x2+y2+x2y2)

x(y2−i
√

x2+y2+x2y2)√
2
√

x2+y2
√

x2+y2+x2y2

y(x2+i
√

x2+y2+x2y2)√
2
√

x2+y2
√

x2+y2+x2y2

−
√

x2+y2√
2(x2+y2+x2y2)

x(y2+i
√

x2+y2+x2y2)√
2
√

x2+y2
√

x2+y2+x2y2

y(x2−i
√

x2+y2+x2y2)√
2
√

x2+y2
√

x2+y2+x2y2

xy√
x2+y2+x2y2

y√
x2+y2+x2y2

x√
x2+y2+x2y2













.

(6)

Both the up-type quark mass matrix Uu and the down-type quark mass matrix Ud

exhibit a similar pattern, depending only on two of the five parameters. In the case of Ud,
the parameters are denoted by primed symbols: A′, B′, C′, x′, and y′. By considering both
matrices, a CKM matrix that depends on four parameters—two from up-type quarks and
two from down-type quarks—can be obtained. When all the materials mentioned above
are collected, it becomes feasible to study how BAU was generated in the Standard Model.

3. Variation of R∆ ≡ ∆CP/∆
(0)
CP

in the Natural Parameters

As mentioned in Section 1, Jarlskog proposed a measure of CPV as given in Equation (1).
However, the current value of this quantity is about ten orders of magnitude smaller
than what is needed to account for the cosmologically observed BAU. Examining the
components of ∆CP, one can see that it comprises a CKM-related Jarlskog invariant J and
two mass-related factors, defined as follows:

∆m2
(u) = (m2

t − m2
c )(m

2
c − m2

u)(m
2
u − m2

t ), (7)

∆m2
(d) = (m2

b − m2
s )(m

2
s − m2

d)(m
2
d − m2

b). (8)

If one substitutes the eigenvalues in Equation (5) into Equations (7) and (8), with
the assignment (m1, m2, m3) = (mu, mc, mt) and (m′

1, m′
2, m′

3) = (md, ms, mb), then
Equations (7) and (8) can be expressed in terms of five natural parameters as follows:

∆m2
(u) = 2C[B2(x2 + y2 + x2y2)− C2]

(x2 + y2 + x2y2)3/2

x3y3
, (9)

∆m2
(d) = 2C′[B′2(x′2 + y′2 + x′2y′2)− C′2]

(x′2 + y′2 + x′2y′2)3/2

x′3y′3 . (10)

However, this is just one of the 36 possible assignments, as there is no inherent reason
to associate a particular eigenvalue m2

i with a particular quark flavor q, where i = 1, 2, 3
denotes the eigenvalues and q = u, c, t denotes the up-type quark flavors.

By utilizing the mass differences, one can express Equation (1) in terms of these
differences as follows:

∆CP = J ∆m2
(u) ∆m2

(d)/T12 . (11)



Symmetry 2023, 15, 1051 6 of 22

However, the current value of ∆
(0)
CP is at most ≈ 10−20, which is much smaller than the

value required to explain the observed BAU, as discussed in Section 1 and reported in [18].
In the study by [9], it was observed that, in several cases with S2-symmetry, the value

of J was about 5700 times larger than what the Standard Model predicts. Despite such
significant enhancements, the resulting value is still insufficient to account for the observed
1010 discrepancy in the BAU. It should be noted that the masses of quarks also contribute
to ∆CP, and there are a total of ten free parameters in the equation. However, due to the
complexity of the equation, it is too difficult to study it analytically. Therefore, to determine
if this model can generate a significant amount of BAU, a simplified example of the
parameter sets will be considered.

In [10], the author highlighted the difficulty in assigning which eigenvalue m2
i corre-

sponds to which up-type quark flavor m2
q. It was noted that there are 36 possible ways to

make such assignments, but only eight of them were classified as being of O(λ). Further-
more, the author found that only four out of the eight ways were able to fit the empirical
CKM elements to an accuracy of O(λ1/2) or better at the tree level, as shown in Equa-
tions (29) and (34)–(37) of that paper.

The four candidate CKM matrices given in Equations (32) and (33) of [10] can be
denoted here by:

V[52] = V





1
3
2



(2 3 1) =





s p∗ r∗

p′∗ q p′

r p s∗





= V∗[25] = V∗





2
3
1



(1 3 2), (12)

V[22] = V





2
3
1



(2 3 1) =





r p s∗

p′∗ q p′

s p∗ r∗





= V∗[55] = V∗





1
3
2



(1 3 2). (13)

The numbers in square brackets denote their positions in Table 1 of the same reference,
and the matrix elements p, p′, q, r, and s are also provided in Equations (20)–(24) of the
paper. Notably, the value of J for V[25] and V[22] is the same, and so is the value for V[55]
and V[52]. Additionally, the absolute value of J for V[22] and V[55] is identical, but with
opposite signs, given by:

J25 = J22 = Im[p · p · r∗ · s] = −J55 = −J52, (14)

when Vus, Vtb, V∗
ub, and V∗

ts are taken into account.
If one divides each of p, r, and s into its real and imaginary parts as follows: p = pr + ipi,

r = rr + iri, and s = sr + isi, it is straightforward to show that:

Im[p · p · r∗ · s] = −Im[p∗ · p∗ · r · s∗]

= (p2
r − p2

i )(rr si − ri sr) + 2pr pi(rr sr + ri si), (15)

when taking Vus, Vtb, V∗
ub, and V∗

ts into account.
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Table 1. According to Equations (34)–(37) in [10], there are 32 candidate sets of 10 parameters that

yield the same predictions for the CKM elements. These sets satisfy the following values: |Vud| =
|Vtb| ≈ 0.9925, |Vub| = |Vtd| ≈ 0.0075, |Vus| = |Vts| = |Vcd| = |Vcb| ≈ 0.122023, and |Vcs| ≈ 0.9845.

# x y x′ y′ A B C A′ B′ C′

1 −0.00744658 −121.51 −0.182684 22.198 14,923 −0.914387 111.122 8.73564 0.0695014 −1.56993
2 −0.00744658 121.51 −0.182684 −22.198 14,923 0.914387 −111.122 8.73564 −0.0695014 1.56993
3 0.00744658 121.51 0.182684 −22.198 14,923 −0.914387 111.122 8.73564 0.0695014 −1.56993
4 0.00744658 −121.51 0.182684 22.198 14,923 0.914387 −111.122 8.73564 −0.0695014 1.56993

5 0.182684 −22.198 0.00744658 121.51 14,922 118.826 −2681.72 8.73621 −0.000534827 0.0650529
6 0.182684 22.198 0.00744658 −121.51 14,922 −118.826 2681.72 8.73621 0.000534827 −0.0650529
7 −0.182684 22.198 −0.00744658 −121.51 14,922 118.826 −2681.72 8.73621 −0.000534827 0.0650529
8 −0.182684 −22.198 −0.00744658 121.51 14,922 −118.826 2681.72 8.73621 0.000534827 −0.0650529

9 0.00909528 −0.0608101 −0.082085 134.29 14,596.5 2182.76 −134.23 8.73621 0.00529903 −0.714706
10 0.00909528 0.0608101 −0.082085 −134.29 14,596.5 −2182.76 134.23 8.73621 −0.00529903 0.714706
11 −0.00909528 −0.0608101 0.082085 134.29 14,596.5 −2182.76 134.23 8.73621 −0.00529903 0.714706
12 −0.00909528 0.0608101 0.082085 −134.29 14,596.5 2182.76 −134.23 8.73621 0.00529903 −0.714706

13 −0.082085 134.29 0.00909528 −0.0608101 14,923 9.05968 −1220.85 8.54526 1.2767 −0.0785808
14 −0.082085 −134.29 0.00909528 0.0608101 14,923 −9.05968 1220.85 8.54526 −1.2767 0.0785808
15 0.082085 −134.29 −0.00909528 0.0608101 14,923 9.05968 −1220.85 8.54526 1.2767 −0.0785808
16 0.082085 134.29 -0.00909528 −0.0608101 14,923 −9.05968 1220.85 8.54526 −1.2767 0.0785808

17 −0.110803 −3.32012 0.0608101 13.4637 14,906.6 −491.394 1642.55 8.73603 −0.0392728 0.530264
18 −0.110803 3.32012 0.0608101 −13.4637 14,906.6 491.394 −1642.55 8.73603 0.0392728 −0.530264
19 0.110803 −3.32012 −0.0608101 13.4637 14,906.6 491.394 −1642.55 8.73603 0.0392728 −0.530264
20 0.110803 3.32012 −0.0608101 −13.4637 14,906.6 −491.394 1642.55 8.73603 −0.0392728 0.530264

21 −0.0608101 13.4637 0.110803 −3.32012 14,922.7 67.1443 −905.787 8.72662 0.287418 −0.961579
22 −0.0608101 −13.4637 0.110803 3.32012 14,922.7 −67.1443 905.787 8.72662 −0.287418 0.961579
23 0.0608101 13.4637 −0.110803 −3.32012 14,922.7 −67.1443 905.787 8.72662 −0.287418 0.961579
24 0.0608101 −13.4637 −0.110803 3.32012 14,922.7 67.1443 −905.787 8.72662 0.287418 −0.961579

25 0.0247235 −40.4473 −0.149569 14.8797 14,923 9.11516 −368.836 8.73535 0.0858003 −1.29222
26 0.0247235 40.4473 −0.149569 −14.8797 14,923 −9.11516 368.836 8.73535 −0.0858003 1.29222
27 −0.0247235 40.4473 0.149569 −14.8797 14,923 9.11516 −368.836 8.73535 0.0858003 −1.29222
28 −0.0247235 −40.4473 0.149569 14.8797 14,923 −9.11516 368.836 8.73535 −0.0858003 1.29222

29 0.149569 −14.8797 −0.0247235 40.4473 14,921.5 146.962 −2207.36 8.73621 0.00533148 −0.215923
30 0.149569 14.8797 −0.0247235 −40.4473 14,921.5 −146.962 2207.36 8.73621 −0.00533148 0.215923
31 −0.149569 −14.8797 0.0247235 40.4473 14,921.5 −146.962 2207.36 8.73621 −0.00533148 0.215923
32 −0.149569 14.8797 0.0247235 −40.4473 14,921.5 146.962 −2207.36 8.73621 0.00533148 −0.215923

By substituting Equations (9), (10), and (15) into Equation (11), one can obtain a
comprehensive expression for ∆CP in terms of 10 natural parameters. The next step involves
varying these parameters from their current values to SN-symmetric values and then

comparing the resulting ∆CP with its current value ∆
(0)
CP ≈ 10−20 at every stage of the

process.
Afterwards, the derived CKM elements were subjected to several tests by fitting them

with empirical data given by [11]:

V
emp.
CKM =







0.97401+0.00011
−0.00011 0.22650+0.00048

−0.00048 0.00361+0.00011
−0.00009

0.22636+0.00048
−0.00048 0.97320+0.00011

−0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.0000024
−0.000035







≈





O(1) O(λ) O(λ3)
O(λ) O(1) O(λ2)
O(λ3) O(λ2) O(1)



, (16)

where λ ≈ 0.22 is one of the Wolfenstein’s parameters.
Taking the V[52] case as an example, it predicts that s = Vud = V∗

tb, r = Vtd = V∗
ub,

p = Vts = V∗
us, p′ = Vcb = V∗

cd, q = Vcs, and |p| = |p′|. Then one may let x, y, x′, and y′ run
respectively from −100 to +100 to see if there are parameter spaces in which

|s| ≥ 0.97, (17)

|q| ≥ 0.97, (18)

0.00854 ≥ |r| ≥ 0.00361, (19)

and 0.22650 ≥ |p| = |p′| ≥ 0.03987. (20)

Among these four equations, Equations (19) and (20) are the most critical. The absolute
value of r is expected to lie between the maximum 0.00854 and the minimum 0.00361 of the
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elements Vtd and Vub, while the absolute value of s is expected to lie between the maximum
0.22650 and the minimum 0.03987 of the elements Vcb, Vcd, Vts, and Vus. Additionally,
it would be desirable for them to lie closer to their geometric or arithmetic means, as
such degeneracies may split in opposite directions when loop corrections are taken into
account. For example, the geometric mean of |r| is

√
0.00854 · 0.00361 ≈ 0.00555, and its

arithmetic mean is (0.00854 + 0.00361)/2 = 0.00743, while the geometric mean of |s| is√
0.22650 · 0.03987 ≈ 0.09503, and its arithmetic mean is (022650 + 0.03987)/2 = 0.13314.

Therefore, x, y, x′, and y′ will be tested from −100 to +100 to see where the predicted CKM
elements fit the empirical values best.

Consequently, 64 sets of x, y, x′, and y′ that yield the same values for |s| ≈ 0.9925,
|q| ≈ 0.9845, |r| ≈ 0.0075, and |p| = |p′| ≈ 0.122023 are found. Substituting these x, y, x′,
and y′ values along with the current quark masses into Equation (11) results in 64 sets of A,
B, C, A′, B′, and C′ values. The quark masses used here are given by:

m
(0)
u = 0.0023 GeV, m

(0)
c = 1.275 GeV, m

(0)
t = 173.2 GeV,

m
(0)
d = 0.0048 GeV, m

(0)
s = 0.095 GeV, m

(0)
b = 4.18 GeV, (21)

where m
(0)
q are current quark masses for q = u, c, t, d, s, and b. Using the current values

of the CKM matrix elements and quark masses, one obtains a value of approximately

3.19 × 109 for the mass-squared part of Equation (11), denoted as ∆m
(0)2
(u)

· ∆m
(0)2
(d)

. Such a

value will be compared with the corresponding value obtained when the quark masses
vary in the natural parameters.

In this way, one obtains 64 sets of x, y, x′, y′, A, B, C, A′, B′, and C′ values. However,
half of them are excluded because some of the masses of down-type quarks are predicted
to be imaginary at the S2-symmetric point (x′, y′) = (−1, 1), which is obviously irrational.
As a result, only 32 of them are presented in Table 1.

If all 10 parameters vary arbitrarily, it is theoretically always possible to find parameter

spaces in which ∆CP is on the tens order stronger than ∆
(0)
CP ≈ 10−20. However, it is really

too arbitrary to have any physical meanings. Thus, assumptions for some of the parameters
will be made, and the discussion will concentrate on one very simplified case.

Firstly, it is assumed that A, B, C, A′, B′, and C′ are fixed or very slowly varying
quantities during the S2-breaking process to be studied below, so one may use their current
values listed in Table 1 in the following calculations. Secondly, it is assumed that the
residual S2 symmetries for up- and down-type quarks are not broken down simultaneously,
and that it happened among up-type quarks first while the down-type ones still possessed
S2 symmetry. As mentioned in [9], there are three S2-symmetric patterns: x′ = −y′ = −1,
x′ = −y′ = 1, and x′ = y′ = −1. Here, the x′ = −y′ = −1, or (x′, y′) = (−1, 1), case is
selected for an example in the following calculations.

The proposed method for examining parameter spaces for an extremely large ∆CP is
to numerically test the values of x and y from their S2-symmetric values (x, y) = (−1, 1) to
their current values. To quantify the magnitude of ∆CP in different parameter spaces, the

ratio of the running ∆CP to its current value ∆
(0)
CP is defined as:

R∆ =
∆CP

∆
(0)
CP

=
J · ∆m2

(u) · ∆m2
(d)

J(0) · ∆m
(0)2
(u)

· ∆m
(0)2
(d)

, (22)

in which a common factor T12 is canceled out naturally. In this way, putting T12 or v12 into
Equation (1) given in section 1 will not affect the final result at all.

If one examines R∆ by letting x and y run from (x, y) = (−1, 1) to their current values
given in Table 1, the 3D plots of all 32 candidate sets demonstrate many parameter spaces
in which R∆ ≥ 1010. This means that under such circumstances, CPV could be extremely
strong, leading to the generation of a large amount of BAU.



Symmetry 2023, 15, 1051 9 of 22

As shown in Figure 1, all 32 3D plots exhibit many areas in which R∆ ≥ 1010. In some
of them, a peak emerging from the green R∆ = 1010 plane near the point (x, y) = (−1, 1)
is observed. In fact, such a peak always exists in all 32 plots. The reason why one cannot
see them in cases 01, 04, 14, and 15 is that they are hidden by the plot ranges of x and y in
the software Wolfram Mathematica. However, if one zooms in on the area around (x, y) =
(−1,1) as depicted in Figure 2, the peak becomes more noticeable.

Figure 1. Cont.
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Figure 1. Using Wolfram Mathematica, 3D plots were generated to depict the values of R∆ in the x and

y parameter spaces, with the logarithm (base 10) of R∆ represented along the z-axis. The parameter x

ranges from −1 to its current value, as given in Table 1, while y ranges from 1 to its current value.

Notably, the plots reveal multiple parameter spaces where R∆ is significantly greater than 1010,

particularly in the vicinity of the point (x, y) = (−1, 1). This observation implies that, regardless of

the specific scenario that occurred in our universe, there must have been a highly productive era

during which the S2 symmetry of down-type quarks was broken.

Figure 2. Cont.
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Figure 2. In cases 01, 04, 14, and 15, the peaks that extend beyond the R∆ = 1010 plane around the

point (x, y) = (−1, 1) are not particularly conspicuous. To obtain a clearer view, we zoom in on this

area in the four corresponding figures.

It is worth noting that in all 32 cases, R∆ becomes extremely large, on the order of 1010,
as the values of x and y approach the S2-symmetric point (x, y) = (−1, 1). However, at that
exact point, R∆ is equal to 0 since pi = ri = si = 0, and therefore J = 0 if one substitutes
(x, y) = (−1, 1) into Equation (22). This discontinuity at the S2-symmetric point indicates
that R∆ is highly sensitive to small variations in the values of x and y near that point.

To summarize, all 32 cases studied in this article have regions where R∆ ≫ 1010,
indicating the possibility of extremely strong CPV that could generate the observed baryon
asymmetry in the universe. These regions are often concentrated around the S2-symmetric
point (x, y) = (−1, 1). It is suggested that the evolution of the universe, from a state where
both up- and down-type quarks were S2-symmetric to a state where only the down-type
quarks remained S2-symmetric, may have caused a variation in the strength of CPV. This
variation in CPV strength could have been exceptionally strong in certain parameter spaces,
resulting in the generation of the observed baryon asymmetry in the universe. It also
suggests that CP symmetry can be violated in conjunction with the breakdown of SN

symmetries, at least in the scenario presented in this article. This provides a potential
solution to both the CPV problem and the BAU problem without introducing additional
complications.

4. Conclusions and Discussions

This article explored the production of the BAU in the SM by studying the Jarlskog
measure of CP violation, ∆CP. Previous research has shown that the SM alone is already
enough to ignite CPV explicitly, that the results fit experiments to an accuracy of O(λ1/2)
or better, and that six quark masses were composed of ten natural parameters, while the
nine CKM elements were composed of only four of these parameters. These parameters
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were considered “natural” since they are solely composed of the Yukawa couplings and
the vacuum expectation value v. Such a parameterization of the CKM matrix in four
parameters is as natural as the Kobayashi–Maskawa parameterization [3] or the standard
parameterization [24], which are similar to different coordinate systems in geometry. This
provided us with a new perspective to investigate the relationships between the CKM
matrix and the Yukawa coupling matrices that was not present in other parameterizations.

By examining 32 sets of x, y, x′, and y′ that have the same CKM performances, one can
obtain 32 sets of the parameters A, B, C, A′, B′, and C′. In order to investigate their potential
for producing BAU, we simplified the problem by assuming that six of the parameters
are constants and that two are fixed by assuming an S2 symmetry in the down-quark
sector. To measure the performance of ∆CP in the remaining free parameters x and y, a

ratio R∆ ≡ ∆CP/∆
(0)
CP was introduced.

Then, x and y were allowed to vary from the S2-symmetric point (x, y) = (−1, 1) to
their current values, and we found regions in all 32 cases where R∆ was much larger than
1010, providing evidence that SM alone can produce a significant amount of BAU, at least in
the scenario presented in this article. Interestingly, we also observed that in all 32 plots, R∆

diverges as the parameters approach the point (x, y) = (−1, 1), where J = 0 and R∆ = 0.
This suggests a discontinuity at that point.

It is important to note that, while the investigation presented here is simplified, it still
provides valuable insights into the CPV and BAU problems within the SM. Furthermore,
the natural parametrization derived here is a significant contribution to the field and can
potentially lead to further advancements in this area of research. It is also important to
continue exploring other candidate states and further refining the model in order to better
understand the complexities of these problems. Ultimately, continued research in this area
will help us gain a deeper understanding of the universe and the fundamental processes
that govern it.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The author would like to thank Hai-Yang Cheng for helpful discussions and

suggestions during the revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Christenson, J.H.; Cronin, J.; Fitch, V.L.; Turlay, R. Evidence for the 2π Decay of the K02 Meson. Phys. Rev. Lett. 1964, 13, 138.

[CrossRef]

2. Cabibbo, N. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett. 1963, 10, 531. [CrossRef]

3. Kobayashi, M.; Maskawa, T. CP-Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652–657.

[CrossRef]

4. Lin, C.L.; Lee, C.E.; Yang, Y.W. The Two Higgss-Doublet Extension of the Standard Model and S3 Symmetry. Chin. J. Phys. 1988,

26, 180.

5. Lee, C.E.; Lin, C.L.; Yang, Y.W. Weak mixing matrix under permutation symmetry breaking. Phys. Rev. D 1990, 42, 2355. [CrossRef]

6. Lin, C.L.; Lee, C.E.; Yang, Y.W. Feyman rules in the Type III natural flavour-conserving Two-Higgs Doublet Model. Phys. Rev. D

1994, 50, 558–564. [CrossRef]

7. Lee, C.E.; Yang, Y.W.; Chang, Y.L.; Lai, S.N. Quark Mass Matrix Under SN Symmetry. Chin. J. Phys. 1986, 24, 188.

8. Lee, C.E.; Yang, Y.W.; Lai, S.N.; Chang, Y.L. Quark Mass Matrix with Non-Hermitian Basis Under SN Symmetry. Chin. J. Phys.

1986, 24, 254.

9. Lin, C.L. An Improved Standard Model Comes with Explicit CPV and Productive of BAU. J. Mod. Phys. 2020, 11, 1157–1169.

[CrossRef]

10. Lin, C.L. Exploring the Origin of CP Violation in the Standard Model. Lett. High Energy Phys. 2021, 221, 1.

11. Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.;

Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 8, 083C01.

12. Lin, C.L. A Two-Higgs-Doublet Model without Flavor-Changing Neutral Currents at Tree-Level. J. Mod. Phys. 2019, 10, 35–42.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.13.138
http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevD.42.2355
http://dx.doi.org/10.1103/PhysRevD.50.558
http://dx.doi.org/10.4236/jmp.2020.118072
http://dx.doi.org/10.4236/jmp.2019.101004


Symmetry 2023, 15, 1051 22 of 22

13. Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.;

Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astro-Phys. 2014, 571, A16.

[CrossRef]

14. Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.;

Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astro-Phys. 2016, 594, A13. [CrossRef]

15. Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S.S.; Page, L.; Spergel, D.N.; Tucke, G.S.; et al.

First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophys. J.

Suppl. 2003, 148, 1. [CrossRef]

16. Jarlskog, C. Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP

Nonconservation. Phys. Rev. Lett. 1985, 55, 1039. [CrossRef]

17. Tranberg, A. Standard model CP violation and cold electroweak baryogenesis. Phys. Rev. D 2011, 84, 083516. [CrossRef]

18. Shaposhnikov, M. Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory. JETP Lett. 1986, 44, 465.

19. Gavela, M.; Hernansez, P.; Prloff, J.; Pene, O. Standard Model CP-violation and Baryon asymmetry. Mod. Phys. Lett. 1994, A9,

795–810.

20. Farrar, G.; Shaposhnikov, M. Baryon asymmetry of the Universe in the minimal standard model. Phys. Rev. Lett. 1993, 70,

2833–2836. [CrossRef]

21. Huet, P.; Sather, E. Electroweak baryogenesis and standard model CP violation. Phys. Rev. D 1995, 51, 379–394. [CrossRef]

[PubMed]

22. Derman, E.; Tsao, H.S. [SU2 × U1]× Sn flavor dynamics and a bound on the number of flavors. Phys. Rev. D 1979, 20, 1207.

[CrossRef]

23. Branco, G.C.; Buras, A.J.; Gerard, J.M. CP violation in models with two- and three-scalar doublets. Nucl. Phys. B 1985, 259, 306.

24. Chau, L.L.; Keung, W.-Y. Comments on the Parametrization of the Kobayashi-Maskawa Matrix. Phys. Rev. Lett. 1984, 53, 1802.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1086/377253
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://dx.doi.org/10.1103/PhysRevD.84.083516
http://dx.doi.org/10.1103/PhysRevLett.70.2833
http://dx.doi.org/10.1103/PhysRevD.51.379
http://www.ncbi.nlm.nih.gov/pubmed/10018492
http://dx.doi.org/10.1103/PhysRevD.20.1207
http://dx.doi.org/10.1103/PhysRevLett.53.1802

	Introduction
	CP Violation in the Standard Model
	Variation of R CP/(0)CP in the Natural Parameters
	Conclusions and Discussions
	References

